10
Abstract Views
1 0 0
PDF Download
Biotechnology

MSC-derived exosomes ppregulate KGF and PDGF expression in a rat model of second-degree burn injury

, , ,
Pages 310-321

Abstract

Second-degree burn injuries necessitate efficient treatment approaches to expedite wound healing and reinstate skin integrity. Exosomes generated from mesenchymal stem cells (E-MSCs) are a promising cell-free therapeutic approach owing to their capacity to control inflammation and facilitate tissue regeneration. This research utilized a post-test-only control group experimental design with 28 male Wistar rats, randomly allocated into four groups: healthy control (G1), burn damage treated with NaCl (G2), and burn injury treated with E-MSCs at doses of 100 µL (G3) and 200 µL (G4). On the seventh day following therapy, the expression levels of keratinocyte growth factor (KGF) and platelet-derived growth factor (PDGF) were measured using RT-PCR. The expression of KGF was markedly elevated in G3 (0.65 ± 0.03) and G4 (0.92 ± 0.08) in comparison to G2 (0.32 ± 0.09; p < 0.001). Likewise, PDGF expression was significantly elevated in G3 (1.08 ± 0.24) and G4 (1.49 ± 0.19) compared to G2 (0.66 ± 0.08; p < 0.001). The results indicate a dose-dependent influence of E-MSC administration on the upregulation of KGF and PDGF, which are essential for epithelialization and angiogenesis in the wound healing process. In conclusion, E-MSCs demonstrate considerable promise as a cell-free treatment strategy for improving the healing of second-degree burns. Additional research is necessary to confirm these results and evaluate their practical relevance in clinical environments.

There is no Figure or data content available for this article

References

  • 1. Żwierełło W, Piorun K, Skórka-Majewicz M, Maruszewska A, Antoniewski J, Gutowska I. Burns: Classification, Pathophysiology, and Treatment: A Review. Int J Mol Sci. 2023 Feb 13;24(4):3749. DOI: 10.3390/ijms24043749.
  • 2. Warby R, Maani C V. Burn Classification. StatPearls [Internet]. 2023 Sep 26 [cited 2025 Jan 16]; Available from: https://www.ncbi.nlm.nih.gov/books/NBK539773/
  • 3. Kim H, Shin S, Han D. Review of History of Basic Principles of Burn Wound Management. Medicina (B Aires) [Internet]. 2022 Mar 7;58(3):400. Available from: https://www.mdpi.com/1648-9144/58/3/400DOI: 10.3390/medicina58030400.
  • 4. Larouche J, Sheoran S, Maruyama K, Martino MM. Immune Regulation of Skin Wound Healing: Mechanisms and Novel Therapeutic Targets. Adv Wound Care. 2018 Jul;7(7):209–31. DOI: 10.1089/wound.2017.0761.
  • 5. Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, LeRoux MA. Concise Review: Role of Mesenchymal Stem Cells in Wound Repair. Stem Cells Transl Med [Internet]. 2012 Feb 1;1(2):142–9. Available from: https://academic.oup.com/stcltm/article/1/2/142-149/6386961DOI: 10.5966/sctm.2011-0018.
  • 6. Kang SK, Shin IS, Ko MS, Jo JY, Ra JC. Journey of Mesenchymal Stem Cells for Homing: Strategies to Enhance Efficacy and Safety of Stem Cell Therapy. Stem Cells Int [Internet]. 2012;2012:1–11. Available from: http://www.hindawi.com/journals/sci/2012/342968/DOI: 10.1155/2012/342968.
  • 7. Padeta I, Nugroho WS, Kusindarta DL, Fibrianto YH, Budipitojo T. Mesenchymal Stem Cell-conditioned Medium Promote the Recovery of Skin Burn Wound. Asian J Anim Vet Adv [Internet]. 2017 Apr 15;12(3):132–41. Available from: https://www.scialert.net/abstract/?doi=ajava.2017.132.141DOI: 10.3923/ajava.2017.132.141.
  • 8. Aryan A, Bayat M, Bonakdar S, Taheri S, Haghparast N, Bagheri M, et al. Human Bone Marrow Mesenchymal Stem Cell Conditioned Medium Promotes Wound Healing in Deep Second-Degree Burns in Male Rats. Cells Tissues Organs. 2018;206(6):317–29. DOI: 10.1159/000501651.
  • 9. Hu P, Yang Q, Wang Q, Shi C, Wang D, Armato U, et al. Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration. Burn Trauma. 2019 Dec 1;7. DOI: 10.1186/s41038-019-0178-8.
  • 10. Wu P, Zhang B, Shi H, Qian H, Xu W. MSC-exosome: A novel cell-free therapy for cutaneous regeneration. Cytotherapy. 2018 Mar;20(3):291–301. DOI: 10.1016/j.jcyt.2017.11.002.
  • 11. Hou Y, Li J, Guan S, Witte F. The therapeutic potential of MSC-EVs as a bioactive material for wound healing. Eng Regen. 2021 Jan 1;2:182–94. DOI: 10.1016/J.ENGREG.2021.11.003.
  • 12. Anderson JD, Johansson HJ, Graham CS, Vesterlund M, Pham MT, Bramlett CS, et al. Comprehensive Proteomic Analysis of Mesenchymal Stem Cell Exosomes Reveals Modulation of Angiogenesis via Nuclear Factor-KappaB Signaling. Stem Cells [Internet]. 2016 Mar 1;34(3):601–13. Available from: https://academic.oup.com/stmcls/article/34/3/601-613/6407579DOI: 10.1002/stem.2298.
  • 13. Qin Z, Jinjin Z, Lili C, Yanchao X, Qin Z, Jinjin Z, et al. Research Progress of PDGF Promoting Wound Repair. Med J Peking Union Med Coll Hosp 2023, Vol 14, Issue 6, Pages 1289-1295 [Internet]. 2023 Nov 30 [cited 2025 Jan 16];14(6):1289–95. Available from: https://xhyxzz.pumch.cn/en/article/doi/10.12290/xhyxzz.2023-0223.pdfDOI: 10.12290/XHYXZZ.2023-0223.
  • 14. Peng Y, Wu S, Tang Q, Li S, Peng C. KGF-1 accelerates wound contraction through the TGF-β1/Smad signaling pathway in a double-paracrine manner. J Biol Chem. 2019 May;294(21):8361–70. DOI: 10.1074/jbc.RA118.006189.
  • 15. Thalakiriyawa DS, Jayasooriya PR, Dissanayaka WL. Regenerative Potential of Mesenchymal Stem Cell-Derived Extracellular Vesicles. Curr Mol Med. 2022 Feb;22(2):98–119. DOI: 10.2174/1566524021666210211114453.
  • 16. Gangadaran P, Oh EJ, Rajendran RL, Oh JM, Kim HM, Kwak S, et al. Three-dimensional culture conditioned bone marrow MSC secretome accelerates wound healing in a burn injury mouse model. Biochem Biophys Res Commun. 2023 Sep;673:87–95. DOI: 10.1016/j.bbrc.2023.05.088.
  • 17. Bártolo I, Reis RL, Marques AP, Cerqueira MT. Keratinocyte Growth Factor-Based Strategies for Wound Re-Epithelialization. Tissue Eng Part B Rev. 2022 Jun 1;28(3):665–76. DOI: 10.1089/ten.teb.2021.0030.
  • 18. Zhao Q, Zhang J, Chen L, Xing Y. Research Progress of PDGF Promoting Wound Repair. Med J Peking Union Med Coll Hosp [Internet]. 2023;14(6):1289–95. Available from: https://xhyxzz.pumch.cn/en/article/doi/10.12290/xhyxzz.2023-0223DOI: 10.12290/xhyxzz.2023-0223.
  • 19. Jian K, Yang C, Li T, Wu X, Shen J, Wei J, et al. PDGF-BB-derived supramolecular hydrogel for promoting skin wound healing. J Nanobiotechnology. 2022 Dec 26;20(1):201. DOI: 10.1186/s12951-022-01390-0.
  • 20. Wardhana A, Winarno GA. Epidemiology And Mortality Of Burn Injury In Ciptomangunkusumo Hospital, Jakarta: A 5 Year Retrospective Study. J Plast Rekonstruksi. 2024 Dec 11;6(1):234–42. DOI: 10.14228/jpr.v6i1.270.
  • 21. Kusuma YT, Subchan P. Effect of Gel Secretome Hypoxia Mesenchymal Stem Cell on Expression of TGF- β and IL-6 (In Vivo Experimental Study in Male Rats of Wistar Strains Model Hyperglycemic Wounds). Int J Multidiscip Res Anal [Internet]. 2023 Dec 16;06(12). Available from: https://ijmra.in/v6i12/23.phpDOI: 10.47191/ijmra/v6-i12-23.
  • 22. Yan T, Huang L, Yan Y, Zhong Y, Xie H, Wang X. MAPK/AP-1 Signaling Pathway Is Involved in the Protection Mechanism of Bone Marrow Mesenchymal Stem Cells-Derived Exosomes against Ultraviolet-Induced Photoaging in Human Dermal Fibroblasts. Skin Pharmacol Physiol [Internet]. 2023;36(2):98–106. Available from: https://karger.com/article/doi/10.1159/000529551DOI: 10.1159/000529551.
  • 23. Halevy O, Cantley LC. Differential regulation of the phosphoinositide 3-kinase and MAP kinase pathways by hepatocyte growth factor vs. insulin-like growth factor-I in myogenic cells. Exp Cell Res [Internet]. 2004 Jul;297(1):224–34. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0014482704001429DOI: 10.1016/j.yexcr.2004.03.024.
  • 24. Simon AR, Takahashi S, Severgnini M, Fanburg BL, Cochran BH. Role of the JAK-STAT pathway in PDGF-stimulated proliferation of human airway smooth muscle cells. Am J Physiol Cell Mol Physiol [Internet]. 2002 Jun 1;282(6):L1296–304. Available from: https://www.physiology.org/doi/10.1152/ajplung.00315.2001DOI: 10.1152/ajplung.00315.2001.
  • 25. Masamune A. Activation of JAK-STAT pathway is required for platelet-derived growth factor-induced proliferation of pancreatic stellate cells. World J Gastroenterol. 2005;11(22):3385. DOI: 10.3748/wjg.v11.i22.3385.
  • 26. Hu H, Huang J, Lan P, Wang L, Huang M, Wang J, et al. CEA clearance pattern as a predictor of tumor response to neoadjuvant treatment in rectal cancer: a post-hoc analysis of FOWARC trial. BMC Cancer. 2018 Dec 20;18(1):1145. DOI: 10.1186/s12885-018-4997-y.
  • 27. Gouveia L, Betsholtz C, Andrae J. PDGF-A signaling is required for secondary alveolar septation and controls epithelial proliferation in the developing lung. Development. 2018 Apr 1;145(7). DOI: 10.1242/dev.161976.
  • 28. MacLeod AS, Mansbridge JN. The Innate Immune System in Acute and Chronic Wounds. Adv Wound Care. 2016 Feb;5(2):65–78. DOI: 10.1089/wound.2014.0608.
  • 29. Bi Y, Qiao X, Liu Q, Song S, Zhu K, Qiu X, et al. Systemic proteomics and miRNA profile analysis of exosomes derived from human pluripotent stem cells. Stem Cell Res Ther [Internet]. 2022 Sep 5;13(1):449. Available from: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-022-03142-1DOI: 10.1186/s13287-022-03142-1.
  • 30. Piipponen M, Li D, Landén NX. The Immune Functions of Keratinocytes in Skin Wound Healing. Int J Mol Sci. 2020 Nov 20;21(22):8790. DOI: 10.3390/ijms21228790.
  • 31. Patel S, Maheshwari A, Chandra A. Biomarkers for wound healing and their evaluation. J Wound Care. 2016 Jan 2;25(1):46–55. DOI: 10.12968/jowc.2016.25.1.46.
  • 32. Furuta T, Miyaki S, Ishitobi H, Ogura T, Kato Y, Kamei N, et al. Mesenchymal Stem Cell-Derived Exosomes Promote Fracture Healing in a Mouse Model. Stem Cells Transl Med [Internet]. 2016 Dec 1;5(12):1620–30. Available from: https://academic.oup.com/stcltm/article/5/12/1620-1630/6397649DOI: 10.5966/sctm.2015-0285.
  • 33. Raziyeva K, Kim Y, Zharkinbekov Z, Kassymbek K, Jimi S, Saparov A. Immunology of Acute and Chronic Wound Healing. Biomolecules. 2021 May 8;11(5):700. DOI: 10.3390/biom11050700.
  • 34. Safari B, Aghazadeh M, Davaran S, Roshangar L. Exosome-loaded hydrogels: A new cell-free therapeutic approach for skin regeneration. Eur J Pharm Biopharm. 2022 Feb;171:50–9. DOI: 10.1016/j.ejpb.2021.11.002.
  • 35. Marofi F, Alexandrovna KI, Margiana R, Bahramali M, Suksatan W, Abdelbasset WK, et al. MSCs and their exosomes: a rapidly evolving approach in the context of cutaneous wounds therapy. Stem Cell Res Ther [Internet]. 2021 Dec 4;12(1):597. Available from: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-021-02662-6DOI: 10.1186/s13287-021-02662-6.

How to Cite This

Putri, D. A., Putra, A., Sumarawati, T., & Setiawan, E. (2025). MSC-derived exosomes ppregulate KGF and PDGF expression in a rat model of second-degree burn injury. Jurnal Teknologi Laboratorium, 14(2), 310–321. https://doi.org/10.29238/teknolabjournal.v14i2.577

Article Metrics

Download Statistics

Downloads

Download data is not yet available.

Other Statistics

Verify authenticity via CrossMark

Copyright and Permissions

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Publishing your paper with Jurnal Teknologi Laboratorium (JTL) means that the author or authors retain the copyright in the paper. JTL granted an exclusive reuse license by the author(s), but the author(s) are able to put the paper onto a website, distribute it to colleagues, give it to students, use it in your thesis etc, even commercially. The author(s) can reuse the figures and tables and other information contained in their paper published by JTL in future papers or work without having to ask anyone for permission, provided that the figures, tables or other information that is included in the new paper or work properly references the published paper as the source of the figures, tables or other information, and the new paper or work is not direct at private monetary gain or commercial advantage.

JTL journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. This journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets others remix, transform, and build upon the material for any purpose, even commercially.

JTL journal Open Access articles are distributed under this Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA). Articles can be read and shared for All purposes under the following conditions:

  • BY: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • SA:  If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

Data Availability