18
Abstract Views
0 8
PDF Download
Biotechnology

Effects of EH-MSC–derived exosomes on oxidative stress and inflammatory markers in a UVB-induced skin damage rat model

, , ,
Pages 322-334

Abstract

Prolonged exposure to ultraviolet B (UVB) radiation causes persistent skin inflammation, resulting in oxidative stress, collagen breakdown, and progressive loss of collagen. Exosomes generated from mesenchymal stem cells of the umbilical cord (EH-MSCs) have surfaced as a promising cell-free therapeutic approach owing to their anti-inflammatory and antioxidant characteristics. This experimental work assessed the impact of EH-MSC exosomes on inflammatory and oxidative stress indicators in a rat model of collagen loss induced by UVB exposure. Wistar rats were categorized into five groups: healthy control (G1), UVB-exposed animals administered NaCl (G2), hyaluronic acid (G3), 200 µL of EH-MSC exosomes (G4), and 300 µL of EH-MSC exosomes (G5). Exosomes were extracted from rat umbilical cord mesenchymal stem cells via tangential flow filtration and subsequently analyzed using flow cytometry. Tumor necrosis factor-alpha (TNF-α) and glutathione peroxidase (GPx) concentrations were quantified via ELISA, and statistical evaluation was conducted employing ANOVA and Kruskal–Wallis tests. The minimal TNF-α levels were recorded in the healthy control group (72.08 ± 18.30 pg/mL), whereas the maximal values were identified in the hyaluronic acid group (216.80 ± 56.27 pg/mL). Subcutaneous delivery of EH-MSC exosomes in G4 and G5 markedly decreased TNF-α levels in comparison to the saline and hyaluronic acid groups (p < 0.05). GPx levels were maximal in the G5 group (722.60 ± 57.67 pg/mL) and minimal in the saline-treated group (46.90 ± 11.29 pg/mL). Marked disparities in GPx levels were noted among the treatment groups (p < 0.05). The results demonstrate that subcutaneous delivery of EH-MSC exosomes at dosages of 200 µL and 300 µL significantly reduces inflammation and improves antioxidant activity in UVB-induced collagen degradation. EH-MSC exosomes exhibit promise as a cell-free therapeutic strategy for alleviating UVB-induced skin damage.

There is no Figure or data content available for this article

References

  • 1. Pourang A, Tisack A, Ezekwe N, et al. Effects of visible light on mechanisms of skin photoaging. Photodermatol Photoimmunol Photomed. 2022;38(3):191-196. doi:10.1111/phpp.12736
  • 2. Yang YN, Wang F, Zhou W, Wu ZQ, Xing YQ. TNF-α Stimulates MMP-2 and MMP-9 Activities in Human Corneal Epithelial Cells via the Activation of FAK/ERK Signaling. Ophthalmic Res. 2012;48(4):165-170. doi:10.1159/000338819
  • 3. Mirastschijski U, Lupše B, Maedler K, et al. Matrix Metalloproteinase-3 is Key Effector of TNF-α-Induced Collagen Degradation in Skin. Int J Mol Sci. 2019;20(20). doi:10.3390/ijms20205234
  • 4. Chircov C, Grumezescu AM, Bejenaru LE. Hyaluronic acid-based scaffolds for tissue engineering. Rom J Morphol Embryol. 2018;59(1):71-76.
  • 5. Nejati S, Mongeau L. Injectable, pore-forming, self-healing, and adhesive hyaluronan hydrogels for soft tissue engineering applications. Sci Rep. 2023;13(1):14303. doi:10.1038/s41598-023-41468-9
  • 6. Trong HN, Phuong TVT, Van TN, et al. The Efficacy and Safety of Hyaluronic Acid Microinjection for Skin Rejuvenation in Vietnam. Open Access Maced J Med Sci. 2019;7(2):234-236. doi:10.3889/oamjms.2019.059
  • 7. Ha DH, Kim H keun, Lee J, et al. Mesenchymal Stem/Stromal Cell-Derived Exosomes for Immunomodulatory Therapeutics and Skin Regeneration. Cells. 2020;9(5):1157. doi:10.3390/cells9051157
  • 8. Nath Neerukonda S, Egan NA, Patria J, et al. Comparison of exosomes purified via ultracentrifugation (UC) and Total Exosome Isolation (TEI) reagent from the serum of Marek’s disease virus (MDV)-vaccinated and tumor-bearing chickens. J Virol Methods. 2019;263:1-9. doi:10.1016/j.jviromet.2018.10.004
  • 9. Zabaglia LM, Sallas ML, Santos MP Dos, et al. Expression of miRNA-146a, miRNA-155, IL-2, and TNF-α in inflammatory response to Helicobacter pylori infection associated with cancer progression. Ann Hum Genet. 2018;82(3):135-142. doi:10.1111/ahg.12234
  • 10. Cai G, Cai G, Zhou H, et al. Mesenchymal stem cell-derived exosome miR-542-3p suppresses inflammation and prevents cerebral infarction. Stem Cell Res Ther. 2021;12(1):2. doi:10.1186/s13287-020-02030-w
  • 11. Li X, Liu L, Yang J, et al. Exosome Derived From Human Umbilical Cord Mesenchymal Stem Cell Mediates MiR-181c Attenuating Burn-induced Excessive Inflammation. EBioMedicine. 2016;8:72-82. doi:10.1016/j.ebiom.2016.04.030
  • 12. Norouzi-Barough L, Shirian S, Gorji A, Sadeghi M. Therapeutic potential of mesenchymal stem cell-derived exosomes as a cell-free therapy approach for the treatment of skin, bone, and cartilage defects. Connect Tissue Res. 2022;63(2):83-96. doi:10.1080/03008207.2021.1887855
  • 13. Gao W, Wang X, Si Y, et al. Exosome Derived from ADSCs Attenuates Ultraviolet B-mediated Photoaging in Human Dermal Fibroblasts. Photochem Photobiol. 2021;97(4):795-804. doi:10.1111/php.13370
  • 14. Putra A, Alif I, Hamra N, et al. MSC-released TGF-β regulate α-SMA expression of myofibroblast during wound healing. J Stem Cells Regen Med. 2020;16(2):73-79. doi:10.46582/jsrm.1602011
  • 15. Yan T, Huang L, Yan Y, Zhong Y, Xie H, Wang X. Bone marrow mesenchymal stem cell‐derived exosome miR ‐29b‐3p alleviates UV irradiation‐induced photoaging in skin fibroblast. Photodermatol Photoimmunol Photomed. 2023;39(3):235-245. doi:10.1111/phpp.12827
  • 16. Guan L, Suggs A, Galan E, Lam M, Baron E. Topical application of ST266 reduces UV-induced skin damage. Clin Cosmet Investig Dermatol. 2017;Volume 10:459-471. doi:10.2147/CCID.S147112
  • 17. Xue Y, Chen L, Li B, et al. Genome-wide mining of gpx gene family provides new insights into cadmium stress responses in common carp (Cyprinus carpio). Gene. 2022;821:146291. doi:10.1016/j.gene.2022.146291
  • 18. Tian R, Geng Y, Yang Y, Seim I, Yang G. Oxidative stress drives divergent evolution of the glutathione peroxidase (GPX) gene family in mammals. Integr Zool. 2021;16(5):696-711. doi:10.1111/1749-4877.12521
  • 19. Zhou Y, Li J, Wang J, Yang W, Yang Y. Identification and Characterization of the Glutathione Peroxidase (GPX) Gene Family in Watermelon and Its Expression under Various Abiotic Stresses. Agronomy. 2018;8(10):206. doi:10.3390/agronomy8100206
  • 20. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science (1979). 1999;284(5411):143-147. doi:10.1126/science.284.5411.143
  • 21. Bieback K, Hecker A, Kocaömer A, et al. Human Alternatives to Fetal Bovine Serum for the Expansion of Mesenchymal Stromal Cells from Bone Marrow. Stem Cells. 2009;27(9):2331-2341. doi:10.1002/stem.139
  • 22. Alwohoush E, Ismail MA, Al-Kurdi B, et al. Effect of hypoxia on proliferation and differentiation of induced pluripotent stem cell-derived mesenchymal stem cells. Heliyon. 2024;10(19):e38857. doi:10.1016/j.heliyon.2024.e38857
  • 23. Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1). doi:10.1080/20013078.2018.1535750
  • 24. Gu Y, Han J, Jiang C, Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev. 2020;59:101036. doi:10.1016/j.arr.2020.101036
  • 25. Angelina J, Putra A, Trisnadi S, et al. Hypoxia-conditioned mesenchymal stem cells (MSC) exosomes attenuate ultraviolet-B (UVB)-mediated malondialdehyde (MDA) and matrix metalloproteinase-1 (MMP)-1 upregulation in collagen loss models. Med Glas. 2025;22(1):9-14. doi:10.17392/1923-22-01
  • 26. Wlaschek M, Tantcheva-Poór I, Naderi L, et al. Solar UV irradiation and dermal photoaging. J Photochem Photobiol B. 2001;63(1-3):41-51. doi:10.1016/S1011-1344(01)00201-9
  • 27. Fischer AH, Jacobson KA, Rose J, Zeller R. Hematoxylin and Eosin Staining of Tissue and Cell Sections. Cold Spring Harb Protoc. 2008;2008(5):pdb.prot4986. doi:10.1101/pdb.prot4986
  • 28. Witwer KW, Buzás EI, Bemis LT, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2(1). doi:10.3402/jev.v2i0.20360
  • 29. Crowther JR. The ELISA Guidebook. Vol 516. Humana Press; 2009. doi:10.1007/978-1-60327-254-4
  • 30. SPSS Statistics. Accessed September 29, 2025. https://www.ibm.com/mysupport/s/topic/0TO500000001yjtGAA/spss-statistics?language=en_US
  • 31. Shah K, Minkis K, Swary JH, Alam M. Photoaging. In: Cosmetic Dermatology. Wiley; 2022:16-25. doi:10.1002/9781119676881.ch2
  • 32. Chandel NS, Trzyna WC, McClintock DS, Schumacker PT. Role of Oxidants in NF-κB Activation and TNF-α Gene Transcription Induced by Hypoxia and Endotoxin. The Journal of Immunology. 2000;165(2):1013-1021. doi:10.4049/jimmunol.165.2.1013
  • 33. Bashir MM, Sharma MR, Werth VP. UVB and proinflammatory cytokines synergistically activate TNF-alpha production in keratinocytes through enhanced gene transcription. J Invest Dermatol. 2009;129(4):994-1001. doi:10.1038/jid.2008.332
  • 34. De Freitas JH, Bragato JP, Rebech GT, et al. MicroRNA-21 and microRNA-148a affects PTEN, NO and ROS in canine leishmaniasis. Front Genet. 2023;14:1106496. doi:10.3389/fgene.2023.1106496

How to Cite This

Meri, Agung Putra, Chodijah, & Eko Setiawan. (2025). Effects of EH-MSC–derived exosomes on oxidative stress and inflammatory markers in a UVB-induced skin damage rat model. Jurnal Teknologi Laboratorium, 14(2), 322–334. https://doi.org/10.29238/teknolabjournal.v14i2.575

Article Metrics

Download Statistics

Downloads

Download data is not yet available.

Other Statistics

Verify authenticity via CrossMark

Copyright and Permissions

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Publishing your paper with Jurnal Teknologi Laboratorium (JTL) means that the author or authors retain the copyright in the paper. JTL granted an exclusive reuse license by the author(s), but the author(s) are able to put the paper onto a website, distribute it to colleagues, give it to students, use it in your thesis etc, even commercially. The author(s) can reuse the figures and tables and other information contained in their paper published by JTL in future papers or work without having to ask anyone for permission, provided that the figures, tables or other information that is included in the new paper or work properly references the published paper as the source of the figures, tables or other information, and the new paper or work is not direct at private monetary gain or commercial advantage.

JTL journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. This journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets others remix, transform, and build upon the material for any purpose, even commercially.

JTL journal Open Access articles are distributed under this Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA). Articles can be read and shared for All purposes under the following conditions:

  • BY: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • SA:  If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

Data Availability