2229
Abstract Views
960
PDF Download
Special Issues

On the novel coronavirus (COVID-19): a global pandemic

,
Pages 103-114

Abstract

Coronaviruses (COVS) are viruses transmitted through droplets of sputum from an infected person. Analyses identify COVS as zoonotic pathogens, possibly resulting from human-animal contact at animal markets. They share overlapping genetic characteristics with the avian influenza viruses from China. COVS released from humans through droplets of sputum and may land on various surfaces, which poses exposure risks; as studies have shown the virus can exist intact for a relatively long period of time (several days). The recent highly pathogenic COVS outbreak (COVID-19) emerged in Wuhan, China in 2019, include Severe Acute Respiratory Syndrome (SARS-COVS). This highly transmittable disease causes pneumonia and severe respiratory illnesses similar to SARS and MERS; it has a global mortality rate of about 6.13%. The virus has rapidly become a global pandemic, causing major global issues, including health, economic, and age-preference, among other issues. This text summarizes the nature of the emerging COVID-19 global pandemic while analyzing several factors concerning the etiology of the virus. This is done in an urgent effort to educate and provide relevant information about the virus.

There is no Figure or data content available for this article

References

1. Powell A. Coronavirus Cases Hit 17,400 and Are Likely to Surge. The Harvard Gazette. 2020. https://news.harvard.edu/gazette/story/2020/02/as-confirmed-cases-of-coronavirus-surge-path-grows-uncertain/
2. US Centers for Disease Control and Prevention- Coronavirus Disease 2019. 2020. https://www.cdc.gov/
3. Summary of Probable SARS Cases With Onset of Illness From 1 November 2002 to 31 July 2003. World Health Organization. 2003. www.who.int/csr/sars/country/table2003_09_23/en
4. Middle East Respiratory Syndrome Coronavirus (MERS-CoV). World Health Organization 2019. http://applications.emro.who.int/docs/EMRPUB-CSR-241-2019-EN.pdf?ua=1&ua=1&ua=1
5. Novel Coronavirus (2019-nCoV) Situation Report - 11. World Health Organization. 2020. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200131-sitrep-11-ncov.pdf?sfvrsn=de7c0f7_4
6. Louis-Jean J, Cenat K, Sanon D, Stvil R. Coronavirus (COVID-19) in Haiti: A Call for Action. J Community Heal. 2020;45(3):437-439. doi:10.1007/s10900-020-00825-9.
7. Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020;104(3):246-251. doi:10.1016/j.jhin.2020.01.022.
8. Enyoh CE, Verla AW, Qingyue W, et al. Indirect Exposure to Novel Coronavirus (SARS-CoV-2): An Overview of Current Knowledge. J Teknol Lab. 2020;9(1):67-77. doi:10.29238/teknolabjournal.v9i1.227.
9. Linton NM, Kobayashi T, Yang Y, et al. Incubation Period and Other Epidemiological Characteristics of 2019 Novel Coronavirus Infections with Right Truncation: A Statistical Analysis of Publicly Available Case Data. J Clin Med. 2020;9(2):538. doi:10.3390/jcm9020538.
10. Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733. doi:10.1056/NEJMoa2001017.
11. Enyoh CE, Verla AW, Verla EN. Novel Coronavirus (SARS-CoV-2) and Airborne Microplastics. medRxiv. April 2020. doi:10.5281/ZENODO.3738452.
12. Coronavirus Disease 2019 (COVID-19) Situation Report – 133. World Health Organization.
13. Leung YHC, Lau EHY, Zhang LJ, Guan Y, Cowling BJ, Peiris JSM. Avian Influenza and Ban on Overnight Poultry Storage in Live Poultry Markets, Hong Kong. Emerg Infect Dis. 2012;18(8):1339-1341. doi:10.3201/eid1808.111879.
14. Cheng KL, Wu J, Shen WL, et al. Avian Influenza Virus Detection Rates in Poultry and Environment at Live Poultry Markets, Guangdong, China. Emerg Infect Dis. 2020;26(3):591-595. doi:10.3201/eid2603.190888.
15. Yu H, Wu JT, Cowling BJ, et al. Effect of Closure of Live Poultry Markets on Poultry-to-Person Transmission of Avian Influenza A H7N9 Virus: An Ecological Study. Lancet. 2014;383(9916):541-548. doi:10.1016/S0140-6736(13)61904-2.
16. Lau SKP, Woo PCY, Li KSM, et al. Severe Acute Respiratory Syndrome Coronavirus-Like Virus in Chinese Horseshoe Bats. Proc Natl Acad Sci. 2005;102(39):14040-14045. doi:10.1073/pnas.0506735102.
17. Paraskevis D, Kostaki EG, Magiorkinis G, Panayiotakopoulos G, Tsiodras S. Full-Genome Evolutionary Analysis of the Novel Corona Virus (2019-nCoV) Rejects the Hypothesis of Emergence as a Result of a Recent Recombination Event. Infect Genet Evol. 2020. doi:10.1101/2020.01.26.920249.
18. Teeling EC, Jones G, Rossiter SJ. Phylogeny, Genes, and Hearing: Implications for the Evolution of Echolocation in Bats. In: Fenton MB, Grinnell AD, Popper AN, Fay RR, eds. Bat Bioacoustics. New York, NY: Springer; 2016:25-54. doi:10.1007/978-1-4939-3527-7_2.
19. Taylor A, Pitrelli S. One Continent Remains Untouched by the Coronavirus: Antarctica. The Washington Post. 2020. https://www.washingtonpost.com/world/2020/03/24/one-continent-remains-untouched-by-coronavirus-antarctica/
20. Wong S, Lau S, Woo P, Yuen K-Y. Bats as a Continuing Source of Emerging Infections in Humans. Rev Med Virol. 2007;17(2):67-91. doi:10.1002/rmv.520.
21. Chen L, Liu B, Yang J, Jin Q. DBatVir: The Database of Bat-Associated Viruses. Database (Oxford). 2014;2014:bau021. doi:10.1093/database/bau021.
22. Fan Y, Zhao K, Shi Z-L, Zhou P. Bat Coronaviruses in China. Viruses. 2019;11(3):210. doi:10.3390/v11030210.
23. Guan Y. Isolation and Characterization of Viruses Related to the SARS Coronavirus from Animals in Southern China. Science (80-). 2003;302(5643):276-278. doi:10.1126/science.1087139.
24. Lau SKP, Zhang L, Luk HKH, et al. Receptor Usage of a Novel Bat Lineage C Betacoronavirus Reveals Evolution of Middle East Respiratory Syndrome-Related Coronavirus Spike Proteins for Human Dipeptidyl Peptidase 4 Binding. J Infect Dis. 2018;218(2):197-207. doi:10.1093/infdis/jiy018.
25. Salata C, Calistri A, Parolin C, Palù G. Coronaviruses: A Paradigm of New Emerging Zoonotic Diseases. Pathog Dis. 2019;77(9). doi:10.1093/femspd/ftaa006.
26. York A. Novel Coronavirus Takes Flight from Bats? Nat Rev Microbiol. 2020;18(4):191-191. doi:10.1038/s41579-020-0336-9.
27. Zhang T, Wu Q, Zhang Z. Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Curr Biol. March 2020. doi:10.1016/j.cub.2020.03.022.
28. Lam TT-Y, Shum MH-H, Zhu H-C, et al. Identification of 2019-nCoV Related Coronaviruses in Malayan Pangolins in Southern China. BioRxiv. 2020. doi:10.1101/2020.02.13.945485.
29. Tang X, Wu C, Li X, et al. On the Origin and Continuing Evolution of SARS-CoV-2. Nat Sci Rev. March 2020. doi:10.1093/nsr/nwaa036.
30. Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N Engl J Med. January 2020. doi:10.1056/NEJMoa2001316.
31. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061. doi:10.1001/jama.2020.1585.
32. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5.
33. Chang D, Lin M, Wei L, et al. Epidemiologic and Clinical Characteristics of Novel Coronavirus Infections Involving 13 Patients Outside Wuhan, China. JAMA. 2020;323(11):1092-1093. doi:10.1001/jama.2020.1623.
34. Carlos WG, Dela Cruz CS, Cao B, Pasnick S, Jamil S. Novel Wuhan (2019-nCoV) Coronavirus. Am J Crit Care Med. 2020;201(4):7-8. doi:10.1164/rccm.2014P7.
35. Zhao S, Lin Q, Ran J, et al. Preliminary Estimation of the Basic Reproduction Number of Novel Coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-Driven Analysis in the Early Phase of the Outbreak. Int J Infect Dis. 2020;92:214-217. doi:10.1016/j.ijid.2020.01.050.
36. Biscayart C, Angeleri P, Lloveras S, Chaves T do SS, Schlagenhauf P, Rodríguez-Morales AJ. The next big threat to global health? 2019 novel coronavirus (2019-nCoV): What advice can we give to travellers? – Interim recommendations January 2020, from the Latin-American society for Travel Medicine (SLAMVI). Travel Med Infect Dis. 2020;33(January):101567. doi:10.1016/j.tmaid.2020.101567.
37. Munster VJ, Koopmans M, van Doremalen N, van Riel D, de Wit E. A Novel Coronavirus Emerging in China — Key Questions for Impact Assessment. N Engl J Med. 2020;382(8):692-694. doi:10.1056/NEJMp2000929.
38. Xiao Y, Meng Q, Yin X, et al. Pathological Changes in Masked Palm Civets Experimentally Infected by Severe Acute Respiratory Syndrome (SARS) Coronavirus. J Comp Pathol. 2008;138(4):171-179. doi:10.1016/j.jcpa.2007.12.005.
39. Wang M, Yan M, Xu H, et al. SARS-CoV Infection in a Restaurant from Palm Civet. Emerg Infect Dis. 2005;11(12):1860-1865. doi:10.3201/eid1112.041293.
40. Xu H-F, Xu R-H, Xu J-G, et al. Study on the Dynamic Prevalence of Serum Antibody Against Severe Acute Respiratory Syndrome Coronavirus in Employees From Wild Animal Market in Guangzhou. Zhonghua Liu Xing Bing Xue Za Zhi. 2006;27(11):950-952.
41. Parry J. WHO Queries Culling of Civet Cats. BMJ. 2004;328(7432):128. doi:10.1136/bmj.328.7432.128-b.
42. Coronavirus Disease 2019 (COVID-19)- How COVID-19 Spreads. US Centers for Disease Control and Prevention. 2020. https://www.cdc.gov/coronavirus/2019-ncov/about/transmission.html
43. Coronavirus Disease (COVID-19) Advice for the Public. World Health Organization. 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public
44. Evans O. Socio-Economic Impacts of Novel Coronavirus: The policy Solutions. BizEcons Quarterly, Strides Educ Found. 2020;7:3-12.
45. Letko M, Marzi A, Munster V. Functional Assessment of Cell Entry and Receptor Usage for SARS-CoV-2 and Other Lineage B Betacoronaviruses. Nat Microbiol. February 2020. doi:10.1038/s41564-020-0688-y.
46. Hamming I, Timens W, Bulthuis M, Lely A, Navis G, van Goor H. Tissue Distribution of ACE2 Protein, the Functional Receptor for SARS Coronavirus. A first Step in Understanding SARS Pathogenesis. J Pathol. 2004;203(2):631-637. doi:10.1002/path.1570.
47. Zhou P, Yang X-L, Wang X-G, et al. A Pneumonia Outbreak Associated With a New Coronavirus of Probable Bat Origin. Nature. 2020;579(7798):270-273. doi:10.1038/s41586-020-2012-7.
48. Zhou P, Yang X-L, Wang X-G, et al. Discovery of a Novel Coronavirus Associated With The Recent Pneumonia Outbreak in Humans and its Potential Bat Origin. BioRxiv. 2020. doi:10.1101/2020.01.22.914952.
49. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-Cell RNA-seq Data Analysis on the Receptor ACE2 Expression Reveals the Potential Risk of Different Human Organs Vulnerable to 2019-nCoV Infection. Front Med. March 2020. doi:10.1007/s11684-020-0754-0.
50. Zhang Z, Zhu Z, Chen W, et al. Cell Membrane Proteins With High N-Glycosylation, High Expression and Multiple Interaction Partners are Preferred by Mammalian Viruses as Receptors. Wren J, ed. Bioinformatics. 2019;35(5):723-728. doi:10.1093/bioinformatics/bty694.
51. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and ss Blocked by a Clinically Proven Protease Inhibitor. Cell. March 2020;181(2):271-280. doi:10.1016/j.cell.2020.02.052.
52. Sleigh SH, Barton CL. Repurposing Strategies for Therapeutics. Pharmaceut Med. 2010;24(3):151-159. doi:10.1007/BF03256811.
53. Ashburn TT, Thor KB. Drug Repositioning: Identifying and Developing New Uses for Existing Drugs. Nat Rev Drug Discov. 2004;3(8):673-683. doi:10.1038/nrd1468.
54. Devaux CA, Rolain J-M, Colson P, Raoult D. New Insights on the Antiviral Effects of Chloroquine Against Coronavirus: What to Expect for COVID-19? Int J Antimicrob Agents. March 2020;55(5):105938. doi:10.1016/j.ijantimicag.2020.105938.
55. White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM. Malaria. Lancet. 2014;383(9918):723-735. doi:10.1016/S0140-6736(13)60024-0.
56. Lee S-J, Silverman E, Bargman JM. The Role of Antimalarial Agents in the Treatment of SLE and Lupus Nephritis. Nat Rev Nephrol. 2011;7(12):718-729. doi:10.1038/nrneph.2011.150.
57. Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020;14(1):72-73. doi:10.5582/bst.2020.01047.
58. Zhi ZJHHHXZ. Expert Consensus on Chloroquine Phosphate for the Treatment of Novel Coronavirus Pneumonia. 2020;43. doi:10.3760/cma.j.issn.1001-0939.2020.03.009.
59. Wang M, Cao R, Zhang L, et al. Remdesivir and Chloroquine Effectively Inhibit the Recently Emerged Novel Coronavirus (2019-nCoV) in Vitro. Cell Res. 2020;30(3):269-271. doi:10.1038/s41422-020-0282-0.
60. Colson P, Rolain J-M, Raoult D. Chloroquine for the 2019 Novel Coronavirus SARS-CoV-2. Int J Antimicrob Agents. 2020;55(3):105923. doi:10.1016/j.ijantimicag.2020.105923.
61. Harrison C. Coronavirus Puts Drug Repurposing on the Fast Track. Nat Biotechnol. February 2020;38(4):379-381. doi:10.1038/d41587-020-00003-1.
62. Winzeler EA. Malaria research in the post-genomic era. Nature. 2008;455(7214):751-756. doi:10.1038/nature07361.
63. Parhizgar AR, Tahghighi A. Introducing New Antimalarial Analogues of Chloroquine and Amodiaquine: A Narrative Review. Iran J Med Sci. 2017;42(2):115-128.
64. Zhang J, Ma X, Yu F, et al. Teicoplanin Potently Blocks The Cell Entry of 2019-nCoV. BioRxiv. 2020. doi:10.1101/2020.02.05.935387.
65. Zhou N, Pan T, Zhang J, et al. Glycopeptide Antibiotics Potently Inhibit Cathepsin L in the Late Endosome/Lysosome and Block the Entry of Ebola Virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV). J Biol Chem. 2016;291(17):9218-9232. doi:10.1074/jbc.M116.716100.
66. Colson P, Raoult D. Fighting Viruses With Antibiotics: An Overlooked Path. Int J Antimicrob Agents. 2016;48(4):349-352. doi:10.1016/j.ijantimicag.2016.07.004.
67. Warren TK, Jordan R, Lo MK, et al. Therapeutic Efficacy of the Small Molecule GS-5734 Against Ebola Virus in Rhesus Monkeys. Nature. 2016;531(7594):381-385. doi:10.1038/nature17180.
68. Lo MK, Jordan R, Arvey A, et al. GS-5734 and its Parent Nucleoside Analog Inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci Rep. 2017;7(1):43395. doi:10.1038/srep43395.
69. Sheahan TP, Sims AC, Graham RL, et al. Broad-Spectrum Antiviral GS-5734 Inhibits Both Epidemic and Zoonotic Coronaviruses. Sci Transl Med. 2017;9(396):eaal3653. doi:10.1126/scitranslmed.aal3653.
70. Agostini ML, Andres EL, Sims AC, et al. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. Subbarao K, ed. MBio. 2018;9(2). doi:10.1128/mBio.00221-18.
71. Cuba to Send Doctors and Pharmaceuticals to Nicaragua to Face Coronavirus. Cuba News. 2020. https://oncubanews.com/en/cuba/cuba-to-send-doctors-and-pharmaceuticals-to-nicaragua-to-face-coronavirus/
72. Cuban Drug Used Against Coronavirus in China Available in Panama. MENAFM. 2020. https://menafn.com/1099841078/Cuban-drug-used-against-coronavirus-in-China-available-in-Panama
73. Chiyere IBC, Tochukwu MOD, Enyoh CE, Uju IJM. Potential Plants for Treatment and Management of COVID-19 in Nigeria. Acad J Chem. 2020;5(6):69-80. doi:10.32861/ajc.56.69.80.
74. Lemaire S, Vilme M. Armed with Sunflower Tea and Ginger Root, Haitian Mountain People Ready to Treat COVID-19 Symptoms. Voice of America. 2020. https://www.voanews.com/covid-19-pandemic/armed-sunflower-tea-and-ginger-root-haitian-mountain-people-ready-treat-covid-19
75. Timoshyna A, Xu L, Ke Z. COVID-19—The Role of Wild Plants in Health Treatment and why Sustainability of their Trade Matters. Traffic. 2020. https://www.traffic.org/news/covid-19-the-role-of-wild-plants-in-health-treatment/
76. Covid-19 Fear Fuels Rush for Traditional Herbal Medication. Bangkok Post. 2020. https://www.bangkokpost.com/thailand/general/1880490/covid-19-fear-fuels-rush-for-traditional-herbal-medication
77. COVID-19: Boost your Immunity with Dalmia Group’s Herbal Capsule. Econ Times Panache. 2020. https://economictimes.indiatimes.com/magazines/panache/covid-19-boost-your-immunity-with-dalmia-groups-herbal-capsule/articleshow/74684873.cms
78. New York Times. 2020. https://www.nytimes.com/reuters/2020/03/21/world/americas/21reuters-health-coronavirus-bolivia-tradition.html
79. Madagascar “Anti-Virus Brews” Sell Like Hot Cakes in Local Markets. News 24. 2020. https://www.news24.com/news24/africa/news/madagascar-anti-virus-brews-sell-like-hot-cakes-in-local-markets-20200326
80. Louis-Jean J, Cenat K. Beyond the Face-to-Face Learning: A Contextual Analysis. Pedagog Res. 2020;5(4). doi:10.29333/pr/8466.
81. Louis-Jean J, Cenat K, Njoku C V., Angelo J, Sanon D. Coronavirus (COVID-19) and Racial Disparities: A Perspective Analysis. J Racial Ethn Heal Disparities. 2020. https://www.springer.com/journal/40615
There is no Supplemental content for this article.

How to Cite This

Louis-Jean, J., & Aime, M. (2020). On the novel coronavirus (COVID-19): a global pandemic. Jurnal Teknologi Laboratorium, 9(1), 103–114. https://doi.org/10.29238/teknolabjournal.v9i1.230

Article Metrics

Download Statistics

Downloads

Download data is not yet available.

Other Statistics

Verify authenticity via CrossMark

Copyright and Permissions

Publishing your paper with Jurnal Teknologi Laboratorium (JTL) means that the author or authors retain the copyright in the paper. JTL granted an exclusive reuse license by the author(s), but the author(s) are able to put the paper onto a website, distribute it to colleagues, give it to students, use it in your thesis etc, even commercially. The author(s) can reuse the figures and tables and other information contained in their paper published by JTL in future papers or work without having to ask anyone for permission, provided that the figures, tables or other information that is included in the new paper or work properly references the published paper as the source of the figures, tables or other information, and the new paper or work is not direct at private monetary gain or commercial advantage.

JTL journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. This journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets others remix, transform, and build upon the material for any purpose, even commercially.

JTL journal Open Access articles are distributed under this Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA). Articles can be read and shared for All purposes under the following conditions:

  • BY: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • SA:  If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

Data Availability